NAGIOS: RODERIC FUNCIONANDO

Black hole-neutron star coalescence: effects of the neutron star spin on jet launching and dynamical ejecta mass

Repositori DSpace/Manakin

IMPORTANT: Aquest repositori està en una versió antiga des del 3/12/2023. La nova instal.lació está en https://roderic.uv.es/

Black hole-neutron star coalescence: effects of the neutron star spin on jet launching and dynamical ejecta mass

Mostra el registre parcial de l'element

dc.contributor.author Ruiz Meneses, Milton Javier
dc.contributor.author Paschalidis, Vasileios
dc.contributor.author Tsokaros, Antonios
dc.contributor.author Shapiro, Stuart L.
dc.date.accessioned 2023-06-05T07:11:24Z
dc.date.available 2023-06-05T07:11:24Z
dc.date.issued 2020
dc.identifier.citation Ruiz Meneses, Milton Javier Paschalidis, Vasileios Tsokaros, Antonios Shapiro, Stuart L. 2020 Black hole-neutron star coalescence: effects of the neutron star spin on jet launching and dynamical ejecta mass Physical Review D 102 12 1 16
dc.identifier.uri https://hdl.handle.net/10550/87686
dc.description.abstract Black hole-neutron star (BHNS) mergers are thought to be sources of gravitational waves (GWs) with coincident electromagnetic (EM) counterparts. To further probe whether these systems are viable progenitors of short gamma-ray bursts (SGRBs) and kilonovas, and how one may use (the lack of) EM counterparts associated with LIGO/Virgo candidate BHNS GW events to sharpen parameter estimation, we study the impact of neutron star spin in BHNS mergers. Using dynamical spacetime magnetohydrodynamic simulations of BHNSs initially on a quasicircular orbit, we survey configurations that differ in the BH spin (aBH/MBH=0 and 0.75), the NS spin (aNS/MNS=−0.17, 0, 0.23, and 0.33), and the binary mass ratio (q≡MBH:MNS=3∶1 and 5∶1). The general trend we find is that increasing the NS prograde spin increases both the rest mass of the accretion disk onto the remnant black hole, and the rest mass of dynamically ejected matter. By a time Δt∼3500-5500M∼88-138(MNS/1.4  M⊙)  ms after the peak gravitational-wave amplitude, a magnetically driven jet is launched only for q=3∶1 regardless of the initial NS spin. The lifetime of the jets [Δt∼0.5-0.8(MNS/1.4  M⊙)  s] and their outgoing Poynting luminosity [LPoyn∼1051.5±0.5  erg/s] are consistent with typical SGRBs' luminosities and expectations from the Blandford-Znajek mechanism. By the time we terminate our simulations, we do not observe either an outflow or a large-scale magnetic-field collimation for the other systems we consider. The mass range of dynamically ejected matter is 10−4.5-10−2(MNS/1.4  M⊙)  M⊙, which can power kilonovas with peak bolometric luminosities Lknova∼1040-1041.4  erg/s with rise times ≲6.5  h and potentially detectable by the LSST.
dc.language.iso eng
dc.relation.ispartof Physical Review D, 2020, vol. 102, num. 12, p. 1-16
dc.subject Astronomia
dc.subject Astrofísica
dc.title Black hole-neutron star coalescence: effects of the neutron star spin on jet launching and dynamical ejecta mass
dc.type journal article
dc.date.updated 2023-06-05T07:11:26Z
dc.identifier.doi 10.1103/PhysRevD.102.124077
dc.identifier.idgrec 160094
dc.rights.accessRights open access

Visualització       (7.705Mb)

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Cerca a RODERIC

Cerca avançada

Visualitza

Estadístiques