NAGIOS: RODERIC FUNCIONANDO

Classification of healthy, Alzheimer and Parkinson populations with a multi-branch neural network

Repositori DSpace/Manakin

IMPORTANT: Aquest repositori està en una versió antiga des del 3/12/2023. La nova instal.lació está en https://roderic.uv.es/

Classification of healthy, Alzheimer and Parkinson populations with a multi-branch neural network

Mostra el registre parcial de l'element

dc.contributor.author Pedrero Sánchez, José Francisco
dc.contributor.author Belda Lois, Juan Manuel
dc.contributor.author Serra Añó, Pilar
dc.contributor.author Inglés, Marta
dc.contributor.author López Pascual, Juan
dc.date.accessioned 2023-06-13T07:33:50Z
dc.date.available 2023-06-14T04:45:06Z
dc.date.issued 2022 es_ES
dc.identifier.citation José Francisco Pedrero-Sánchez, Juan-Manuel Belda-Lois, Pilar Serra-Añó, Marta Inglés, Juan López-Pascual (2022). Classification of healthy, Alzheimer and Parkinson populations with a multi-branch neural network. Biomedical Signal Processing and Control, 75, 103617. es_ES
dc.identifier.uri https://hdl.handle.net/10550/87868
dc.description.abstract Signal processing, for delimitation of the target events and parametrization, is usually required when instrumented assessment is conducted to determine an individual’s functional status. However, these procedures may rule out relevant information obtained by sensors. To prevent this, the use of models based on neural networks that automatically extract relevant features from the raw signal may improve the characterization of the functional status. Thus, the aim of the study was to determine the classification accuracy of a multi-head convolutional layered neural network (CNN) using a simple functional mobility test in people with different conditions. The raw data from an inertial sensor embedded in a smartphone worn by 90 volunteers (i.e. 30 volunteers with Alzheimer’s disease, 30 with Parkinson’s disease and 30 healthy elderly people) was obtained. The CNN classification accuracy was compared to that of the two parametric classifiers, namely, linear discriminant analysis and multilayer perceptron, a neural network-based classifier. As a result, the validation process revealed that the CNN classifier correctly assigned 100% of the participants to each group. The best accuracy in pathology classification for the two parametric classifiers ranged from 55% to 88%. Therefore, the CNN model provided enhanced classification accuracy as compared to the parametric approaches, even better than the neural network-based classifier. Non parametrization may increase relevant information, thus enhancing pathology impact characterization. es_ES
dc.language.iso en es_ES
dc.publisher Elsevier es_ES
dc.subject alzheimer disease es_ES
dc.subject parkinson’s disease es_ES
dc.subject inertial sensor es_ES
dc.subject multi-branch convolutional classifier es_ES
dc.subject functional assessment es_ES
dc.title Classification of healthy, Alzheimer and Parkinson populations with a multi-branch neural network es_ES
dc.type journal article es_ES
dc.subject.unesco UNESCO::CIENCIAS TECNOLÓGICAS es_ES
dc.identifier.doi 10.1016/j.bspc.2022.103617 es_ES
dc.accrualmethod CI es_ES
dc.embargo.terms 0 days es_ES
dc.type.hasVersion VoR es_ES
dc.rights.accessRights open access es_ES

Visualització       (2.320Mb)

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Cerca a RODERIC

Cerca avançada

Visualitza

Estadístiques