NAGIOS: RODERIC FUNCIONANDO

Tuning the Photocatalytic Activity of Ti-Based Metal–Organic Frameworks through Modulator Defect-Engineered Functionalization

Repositori DSpace/Manakin

IMPORTANT: Aquest repositori està en una versió antiga des del 3/12/2023. La nova instal.lació está en https://roderic.uv.es/

Tuning the Photocatalytic Activity of Ti-Based Metal–Organic Frameworks through Modulator Defect-Engineered Functionalization

Mostra el registre parcial de l'element

dc.contributor.author Abánades Lázaro, Isabel
dc.contributor.author Szalad, Horatiu
dc.contributor.author Valiente, Pablo
dc.contributor.author Albero, Josep
dc.contributor.author García, Hermenegildo
dc.contributor.author Martí Gastaldo, Carlos
dc.date.accessioned 2023-06-14T07:15:34Z
dc.date.available 2023-06-15T04:45:05Z
dc.date.issued 2022 es_ES
dc.identifier.citation Lázaro, I. A., Szalad, H., Valiente, P., Albero, J., García, H., & Martí-Gastaldo, C. (2022). Tuning the Photocatalytic Activity of Ti-Based Metal–Organic Frameworks through Modulator Defect-Engineered Functionalization. ACS Applied Materials & Interfaces, 14 (18), 21007-21017. es_ES
dc.identifier.uri https://hdl.handle.net/10550/87894
dc.description.abstract Defect engineering is a valuable tool to tune the photocatalytic activity of metal–organic frameworks (MOFs). Inducing defects through the attachment of functionalized modulators can introduce cooperative units that can tune the bandgap of the material and enhance their chemical, thermal, and photostabilities among other properties. However, the majority of defect engineering studies for photocatalytic applications are limited to Zr-based MOFs, and there is still a lack of interrelation between synthetic variables, the resultant MOF properties, and their effect on their photocatalytic performance. We report a comprehensive study on the defect engineering of the titanium heterometallic MOF MUV-10 by fluoro- and hydroxy-isophthalic acid (Iso) modulators, rationalizing the effect of the materials’ properties on their photocatalytic activity for hydrogen production. The Iso-OH modified MOFs present a volcano-type profile with a 2.3-fold increase in comparison to the pristine materials, whereas the Iso-F modified samples have a gradual increase with up to a 4.2-fold enhancement. It has been demonstrated that ∼9% of Iso-OH modulator incorporation produces ∼40% defects, inducing band gap reduction and longer excited states lifetime. Similar defect percentages have been generated upon near 40% Iso-F modulator incorporation; however, negligible band gap changes and shorter excited states lifetimes were determined. The higher photocatalytic activity in Iso-F modulator derived MOF has been attributed to the effect of the divergent defect-compensation modes on the materials’ photostability and to the increase in the external surface area upon introduction of Iso-F modulator. es_ES
dc.language.iso en es_ES
dc.publisher ACS es_ES
dc.subject metal−organic frameworks es_ES
dc.subject defects es_ES
dc.subject porous materials es_ES
dc.subject functionalized materials es_ES
dc.subject photocatalysis es_ES
dc.subject photostability es_ES
dc.title Tuning the Photocatalytic Activity of Ti-Based Metal–Organic Frameworks through Modulator Defect-Engineered Functionalization es_ES
dc.type journal article es_ES
dc.subject.unesco UNESCO::CIENCIAS TECNOLÓGICAS es_ES
dc.identifier.doi 10.1021/acsami.2c02668 es_ES
dc.accrualmethod CI es_ES
dc.embargo.terms 0 days es_ES
dc.type.hasVersion VoR es_ES
dc.rights.accessRights open access es_ES

Visualització       (5.430Mb)

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Cerca a RODERIC

Cerca avançada

Visualitza

Estadístiques