NAGIOS: RODERIC FUNCIONANDO

Quantifying uncertainty in high resolution biophysical variable retrieval with machine learning

Repositori DSpace/Manakin

IMPORTANT: Aquest repositori està en una versió antiga des del 3/12/2023. La nova instal.lació está en https://roderic.uv.es/

Quantifying uncertainty in high resolution biophysical variable retrieval with machine learning

Mostra el registre parcial de l'element

dc.contributor.author Martínez Ferrer, Laura
dc.contributor.author Moreno Martínez, Álvaro
dc.contributor.author Campos Taberner, Manuel
dc.contributor.author García Haro, Francisco Javier
dc.contributor.author Muñoz Marí, Jordi
dc.contributor.author Running, Steven W.
dc.contributor.author Kimball, John
dc.contributor.author Clinton, Nicholas
dc.contributor.author Camps Valls, Gustau
dc.date.accessioned 2023-06-15T07:45:15Z
dc.date.available 2023-06-16T04:45:06Z
dc.date.issued 2022 es_ES
dc.identifier.citation Martínez-Ferrer, L., Moreno-Martínez, Á., Campos-Taberner, M., García-Haro, F. J., Muñoz-Marí, J., Running, S. W., ... & Camps-Valls, G. (2022). Quantifying uncertainty in high resolution biophysical variable retrieval with machine learning. Remote Sensing of Environment, 280, 113199. es_ES
dc.identifier.uri https://hdl.handle.net/10550/87910
dc.description.abstract The estimation of biophysical variables is at the core of remote sensing science, allowing a close monitoring of crops and forests. Deriving temporally resolved and spatially explicit maps of parameters of interest has been the subject of intense research. However, deriving products from optical sensors is typically hampered by cloud contamination and the trade-off between spatial and temporal resolutions. In this work we rely on the HIghly Scalable Temporal Adaptive Reflectance Fusion Model (HISTARFM) algorithm to generate long gap-free time series of Landsat surface reflectance data by fusing MODIS and Landsat reflectances. An artificial neural network is trained on PROSAIL inversion to predict monthly biophysical variables at 30 m spatial resolution with associated, realistic uncertainty bars. We emphasize the need for a more thorough analysis of uncertainty, and propose a general and scalable approach to combine both epistemic and aleatoric uncertainties by exploiting Monte Carlo (MC) dropout techniques from the trained artificial network and the propagation of HISTARFM uncertainties through the model, respectively. A model recalibration was performed in order to provide reliable uncertainties. We provide new high resolution products of several key variables to quantify the terrestrial biosphere: Leaf Area Index (LAI), Fraction of Absorbed Photosynthetically Active Radiation (FAPAR), Canopy Water Content (CWC) and Fractional Vegetation Cover (FVC) are at 30 m Landsat spatial resolution and over large continental areas. Two study areas are considered: the large heterogeneous but moderately cloud covered contiguous United States, and the homogeneous but largely cloud covered Amazonia. The produced vegetation products largely agree with the test dataset (R = 0.90, RMSE = 0.80 m2/m2 and ME = 0.12 m2/m2 for LAI, and R = 0.98, RMSE = 0.07 and ME = 0.01 for FAPAR) providing low error and high accuracy. Additionally, the validation considers a thorough comparison with operational and largely validated medium resolution products, such as the Moderate-Resolution Imaging Spectroradiometer (MODIS) and Copernicus Global Land Service. Our products presented a good agreement and consistency with both MODIS (R = 0.84 and R = 0.85 for LAI and FAPAR, respectively) and Copernicus (R = 0.92 and R = 0.91 for LAI and FAPAR, respectively). To foster a wider adoption and reproducibility of the methodology we provide an application in GEE and source code at:https://github.com/IPL-UV/ee_BioNet/ es_ES
dc.language.iso en es_ES
dc.publisher Elsevier es_ES
dc.subject MODIS es_ES
dc.subject landsat es_ES
dc.subject downscaling es_ES
dc.subject biophysical parameter estimation es_ES
dc.subject uncertainty es_ES
dc.subject neural networks es_ES
dc.title Quantifying uncertainty in high resolution biophysical variable retrieval with machine learning es_ES
dc.type journal article es_ES
dc.subject.unesco UNESCO::CIENCIAS TECNOLÓGICAS es_ES
dc.identifier.doi 10.1016/j.rse.2022.113199 es_ES
dc.accrualmethod CI es_ES
dc.embargo.terms 0 days es_ES
dc.type.hasVersion VoR es_ES
dc.rights.accessRights open access es_ES

Visualització       (11.08Mb)

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Cerca a RODERIC

Cerca avançada

Visualitza

Estadístiques