NAGIOS: RODERIC FUNCIONANDO

Multi-sensor spectral synergies for crop stress detection and monitoring in the optical domain: A review

Repositori DSpace/Manakin

IMPORTANT: Aquest repositori està en una versió antiga des del 3/12/2023. La nova instal.lació está en https://roderic.uv.es/

Multi-sensor spectral synergies for crop stress detection and monitoring in the optical domain: A review

Mostra el registre parcial de l'element

dc.contributor.author Berger, Katja
dc.contributor.author Van Wittenberghe, Shari
dc.contributor.author Verrelst, Jochem
dc.date.accessioned 2023-06-15T07:47:15Z
dc.date.available 2023-06-16T04:45:06Z
dc.date.issued 2022 es_ES
dc.identifier.citation Berger, K., Machwitz, M., Kycko, M., Kefauver, S. C., Van Wittenberghe, S., Gerhards, M., ... & Schlerf, M. (2022). Multi-sensor spectral synergies for crop stress detection and monitoring in the optical domain: A review. Remote sensing of environment, 280, 113198. es_ES
dc.identifier.uri https://hdl.handle.net/10550/87911
dc.description.abstract Remote detection and monitoring of the vegetation responses to stress became relevant for sustainable agriculture. Ongoing developments in optical remote sensing technologies have provided tools to increase our understanding of stress-related physiological processes. Therefore, this study aimed to provide an overview of the main spectral technologies and retrieval approaches for detecting crop stress in agriculture. Firstly, we present integrated views on: i) biotic and abiotic stress factors, the phases of stress, and respective plant responses, and ii) the affected traits, appropriate spectral domains and corresponding methods for measuring traits remotely. Secondly, representative results of a systematic literature analysis are highlighted, identifying the current status and possible future trends in stress detection and monitoring. Distinct plant responses occurring under short-term, medium-term or severe chronic stress exposure can be captured with remote sensing due to specific light interaction processes, such as absorption and scattering manifested in the reflected radiance, i.e. visible (VIS), near infrared (NIR), shortwave infrared, and emitted radiance, i.e. solar-induced fluorescence and thermal infrared (TIR). From the analysis of 96 research papers, the following trends can be observed: increasing usage of satellite and unmanned aerial vehicle data in parallel with a shift in methods from simpler parametric approaches towards more advanced physically-based and hybrid models. Most study designs were largely driven by sensor availability and practical economic reasons, leading to the common usage of VIS-NIR-TIR sensor combinations. The majority of reviewed studies compared stress proxies calculated from single-source sensor domains rather than using data in a synergistic way. We identified new ways forward as guidance for improved synergistic usage of spectral domains for stress detection: (1) combined acquisition of data from multiple sensors for analysing multiple stress responses simultaneously (holistic view); (2) simultaneous retrieval of plant traits combining multi-domain radiative transfer models and machine learning methods; (3) assimilation of estimated plant traits from distinct spectral domains into integrated crop growth models. As a future outlook, we recommend combining multiple remote sensing data streams into crop model assimilation schemes to build up Digital Twins of agroecosystems, which may provide the most efficient way to detect the diversity of environmental and biotic stresses and thus enable respective management decisions. es_ES
dc.language.iso en es_ES
dc.publisher Elsevier es_ES
dc.title Multi-sensor spectral synergies for crop stress detection and monitoring in the optical domain: A review es_ES
dc.type journal article es_ES
dc.subject.unesco UNESCO::CIENCIAS TECNOLÓGICAS es_ES
dc.identifier.doi 10.1016/j.rse.2022.113198 es_ES
dc.identifier.idgrec 160694
dc.accrualmethod CI es_ES
dc.embargo.terms 0 days es_ES
dc.type.hasVersion VoR es_ES
dc.rights.accessRights open access es_ES

Visualització       (6.902Mb)

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Cerca a RODERIC

Cerca avançada

Visualitza

Estadístiques