NAGIOS: RODERIC FUNCIONANDO

An Open-Set Recognition and Few-Shot Learning Dataset for Audio Event Classification in Domestic Environments

Repositori DSpace/Manakin

IMPORTANT: Aquest repositori està en una versió antiga des del 3/12/2023. La nova instal.lació está en https://roderic.uv.es/

An Open-Set Recognition and Few-Shot Learning Dataset for Audio Event Classification in Domestic Environments

Mostra el registre parcial de l'element

dc.contributor.author Naranjo Alcázar, Javier
dc.contributor.author Perez Castanos, Sergi
dc.contributor.author Zuccarello, Pedro
dc.contributor.author Torres, Ana M.
dc.contributor.author Lopez, Jose J.
dc.contributor.author Ferri Carreres, Francisco Javier
dc.contributor.author Cobos, Maximo
dc.date.accessioned 2023-06-16T08:46:28Z
dc.date.available 2023-06-17T04:45:06Z
dc.date.issued 2022 es_ES
dc.identifier.citation Naranjo-Alcazar, J., Perez-Castanos, S., Zuccarello, P., Torres, A. M., Lopez, J. J., Ferri, F. J., & Cobos, M. (2022). An open-set recognition and few-shot learning dataset for audio event classification in domestic environments. Pattern Recognition Letters, 164, 40-45. es_ES
dc.identifier.uri https://hdl.handle.net/10550/88332
dc.description.abstract The problem of training with a small set of positive samples is known as few-shot learning (FSL). It is widely known that traditional deep learning algorithms usually show very good performance when trained with large datasets. However, in many applications, it is not possible to obtain such a high number of samples. This paper deals with the application of FSL to the detection of specific and intentional acoustic events given by different types of sound alarms, such as door bells or fire alarms, using a limited number of samples. These sounds typically occur in domestic environments where many events corresponding to a wide variety of sound classes take place. Therefore, the detection of such alarms in a practical scenario can be considered an open-set recognition (OSR) problem. To address the lack of a dedicated public dataset for audio FSL, researchers usually make modifications on other available datasets. This paper is aimed at providing the audio recognition community with a carefully annotated dataset for FSL in an OSR context comprised of 1360 clips from 34 classes divided into pattern sounds and unwanted sounds. To facilitate and promote research on this area, results with state-of-the-art baseline systems based on transfer learning are also presented. es_ES
dc.language.iso en es_ES
dc.publisher Elsevier es_ES
dc.subject audio dataset es_ES
dc.subject classification es_ES
dc.subject few-shot learning es_ES
dc.subject machine listening es_ES
dc.subject open-set recognition es_ES
dc.subject sound processing es_ES
dc.title An Open-Set Recognition and Few-Shot Learning Dataset for Audio Event Classification in Domestic Environments es_ES
dc.type journal article es_ES
dc.subject.unesco UNESCO::CIENCIAS TECNOLÓGICAS es_ES
dc.identifier.doi 10.1016/j.patrec.2022.10.019 es_ES
dc.accrualmethod CI es_ES
dc.embargo.terms 0 days es_ES
dc.type.hasVersion VoR es_ES
dc.rights.accessRights open access es_ES

Visualització       (1.494Mb)

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Cerca a RODERIC

Cerca avançada

Visualitza

Estadístiques