NAGIOS: RODERIC FUNCIONANDO

Approaching sales forecasting using recurrent neural networks and transformers

Repositori DSpace/Manakin

IMPORTANT: Aquest repositori està en una versió antiga des del 3/12/2023. La nova instal.lació está en https://roderic.uv.es/

Approaching sales forecasting using recurrent neural networks and transformers

Mostra el registre parcial de l'element

dc.contributor.author Vallés Pérez, Iván
dc.contributor.author Soria Olivas, Emilio
dc.contributor.author Martínez Sober, Marcelino
dc.contributor.author Serrano López, Antonio J.
dc.contributor.author Gómez Sanchís, Juan
dc.contributor.author Mateo, Fernando
dc.date.accessioned 2023-06-21T10:27:45Z
dc.date.available 2023-06-22T04:45:06Z
dc.date.issued 2022 es_ES
dc.identifier.citation Vallés-Pérez, I., Soria-Olivas, E., Martínez-Sober, M., Serrano-López, A. J., Gómez-Sanchís, J., & Mateo, F. (2022). Approaching sales forecasting using recurrent neural networks and transformers. Expert Systems with Applications, 201, 116993. es_ES
dc.identifier.uri https://hdl.handle.net/10550/88380
dc.description.abstract Accurate and fast demand forecast is one of the hot topics in supply chain for enabling the precise execution of the corresponding downstream processes (inbound and outbound planning, inventory placement, network planning, etc.). We develop three alternatives to tackle the problem of forecasting the customer sales at day/store/item level using deep learning techniques and the Corporación Favorita data set, published as part of a Kaggle competition. Our empirical results show how good performance can be achieved by using a simple sequence to sequence architecture with minimal data preprocessing effort. Additionally, we describe a training trick for making the model more time independent and hence improving generalization over time. The proposed solution achieves a RMSLE of around 0.54, which is competitive with other more specific solutions to the problem proposed in the Kaggle competition. es_ES
dc.language.iso en es_ES
dc.publisher Elsevier es_ES
dc.subject sales forecast es_ES
dc.subject supply chain es_ES
dc.subject deep learning es_ES
dc.subject transformer es_ES
dc.subject sequence to sequence es_ES
dc.title Approaching sales forecasting using recurrent neural networks and transformers es_ES
dc.type journal article es_ES
dc.subject.unesco UNESCO::CIENCIAS TECNOLÓGICAS es_ES
dc.identifier.doi 10.1016/j.eswa.2022.116993 es_ES
dc.accrualmethod CI es_ES
dc.embargo.terms 0 days es_ES
dc.type.hasVersion VoR es_ES
dc.rights.accessRights open access es_ES

Visualització       (1.182Mb)

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Cerca a RODERIC

Cerca avançada

Visualitza

Estadístiques