NAGIOS: RODERIC FUNCIONANDO

Gravitational wave signature of proto-neutron star convection: I. MHD numerical simulations

Repositori DSpace/Manakin

IMPORTANT: Aquest repositori està en una versió antiga des del 3/12/2023. La nova instal.lació está en https://roderic.uv.es/

Gravitational wave signature of proto-neutron star convection: I. MHD numerical simulations

Mostra el registre parcial de l'element

dc.contributor.author Raynaud, Raphaël
dc.contributor.author Cerdá Durán, Pablo
dc.contributor.author Guilet, Jérôme
dc.date.accessioned 2023-06-26T16:31:30Z
dc.date.available 2023-06-26T16:31:30Z
dc.date.issued 2022
dc.identifier.citation Raynaud, Raphaël Cerdá Durán, Pablo Guilet, Jérôme 2022 Gravitational wave signature of proto-neutron star convection: I. MHD numerical simulations Monthly Notices of the Royal Astronomical Society 509 3 3410 3426
dc.identifier.uri https://hdl.handle.net/10550/88547
dc.description.abstract Gravitational waves provide a unique and powerful opportunity to constrain the dynamics in the interior of proto-neutron stars during core collapse supernovae. Convective motions play an important role in generating neutron stars magnetic fields, which could explain magnetar formation in the presence of fast rotation. We compute the gravitational wave emission from proto- neutron star convection and its associated dynamo, by post-processing three-dimensional MHD simulations of a model restricted to the convective zone in the anelastic approximation. We consider two different proto-neutron star structures representative of early times (with a convective layer) and late times (when the star is almost entirely convective). In the slow rotation regime, the gravitational wave emission follows a broad spectrum peaking at about three times the turnover frequency. In this regime, the inclusion of magnetic fields slightly decreases the amplitude without changing the spectrum significantly compared to a non-magnetized simulation. Fast rotation changes both the amplitude and spectrum dramatically. The amplitude is increased by a factor of up to a few thousands. The spectrum is characterized by several peaks associated with inertial modes, whose frequency scales with the rotation frequency. Using simple physical arguments, we derive scalings that reproduce quantitatively several aspects of these numerical results. We also observe an excess of low-frequency gravitational waves, which appears at the transition to a strong field dynamo characterized by a strong axisymmetric toroidal magnetic field. This signature of dynamo action could be used to constrain the dynamo efficiency in a proto-neutron star with future gravitational wave detections.
dc.language.iso eng
dc.relation.ispartof Monthly Notices of the Royal Astronomical Society, 2022, vol. 509, num. 3, p. 3410-3426
dc.subject Astrofísica
dc.subject Astronomia
dc.title Gravitational wave signature of proto-neutron star convection: I. MHD numerical simulations
dc.type journal article
dc.date.updated 2023-06-26T16:31:30Z
dc.identifier.doi 10.1093/mnras/stab3109
dc.identifier.idgrec 160592
dc.rights.accessRights open access

Visualització       (5.188Mb)

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Cerca a RODERIC

Cerca avançada

Visualitza

Estadístiques