NAGIOS: RODERIC FUNCIONANDO

Numerics in fluids and gravitation

Repositori DSpace/Manakin

IMPORTANT: Aquest repositori està en una versió antiga des del 3/12/2023. La nova instal.lació está en https://roderic.uv.es/

Numerics in fluids and gravitation

Mostra el registre parcial de l'element

dc.contributor.advisor Cordero Carrión, Isabel
dc.contributor.author Santos Pérez, Samuel
dc.contributor.other Departament de Matemàtiques es_ES
dc.date.accessioned 2023-09-18T08:57:19Z
dc.date.available 2023-09-19T04:45:06Z
dc.date.issued 2023 es_ES
dc.date.submitted 15-09-2023 es_ES
dc.identifier.uri https://hdl.handle.net/10550/89315
dc.description.abstract In this work we face hyperbolic and elliptic systems of partial differential equations with applications from health sciences to astrophysics. Some will be framed in the context of classical mechanics and other in the Theory of Relativity. Concerning the classical sector we will solve Navier-Stokes Equations to model the blood flow in aorta trying to get some relations between geometrical features and physiological magnitudes of interest. We will also discuss the Euler Equation from both Newtonian and general relativistic approach. We will derive some theoretical results with applications in the development of numerical methods for this balance law. We will propose an improved version of a Fully Constrained Formulation of the Einstein Equations. It will preserve the local uniqueness from previous versions and posses accuracy improvements with the introduction of new variables. Some preliminary test will be carried out. On the other hand, we will introduce a new numerical method to perform the time integration of stiff balance laws. The new approach present stability properties of implicit methods dealing with stiffness but with a computation cost similar to that of an explicit method. First tests in the context of Resistive Relativistic Magnetohydrodynamics and Radiation Hydrodynamics were performed. We will finish with a new algorithm to polynomial regression in several variables with applications in simulations of neutron stars. es_ES
dc.format.extent 270 p. es_ES
dc.language.iso en es_ES
dc.subject numerical calculus es_ES
dc.subject gravitation es_ES
dc.subject einstein equations es_ES
dc.subject fluid mechanics es_ES
dc.subject computational fluid dynamics es_ES
dc.subject balance laws es_ES
dc.subject partial differential equations es_ES
dc.subject numerical methods es_ES
dc.title Numerics in fluids and gravitation es_ES
dc.type doctoral thesis es_ES
dc.subject.unesco UNESCO::MATEMÁTICAS es_ES
dc.subject.unesco UNESCO::ASTRONOMÍA Y ASTROFÍSICA es_ES
dc.embargo.terms 0 days es_ES
dc.rights.accessRights open access es_ES

Visualització       (21.33Mb)

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Cerca a RODERIC

Cerca avançada

Visualitza

Estadístiques