NAGIOS: RODERIC FUNCIONANDO

Coronal voids and their magnetic nature

Repositori DSpace/Manakin

IMPORTANT: Aquest repositori està en una versió antiga des del 3/12/2023. La nova instal.lació está en https://roderic.uv.es/

Coronal voids and their magnetic nature

Mostra el registre parcial de l'element

dc.contributor.author Nölke, J.D.
dc.contributor.author Blanco Rodríguez, Julian
dc.contributor.author Gasent-Blesa, José Luis
dc.contributor.author Sanchis Kilders, Esteban
dc.contributor.author Gutiérrez Márquez, P.
dc.contributor.author Orozco Suárez, D.
dc.contributor.author Albelo Jorge, N.
dc.contributor.author Alvarez Herrero, A.
dc.contributor.author Pérez Grande, Isabel
dc.contributor.author del Toro Iniesta, J.C.
dc.contributor.author Balaguer Jiménez, M.
dc.date.accessioned 2023-11-27T11:13:00Z
dc.date.available 2023-11-27T11:13:00Z
dc.date.issued 2023
dc.identifier.uri https://hdl.handle.net/10550/91451
dc.description.abstract Context. Extreme ultraviolet (EUV) observations of the quiet solar atmosphere reveal extended regions of weak emission compared to the ambient quiescent corona. The magnetic nature of these coronal features is not well understood. Aims. We study the magnetic properties of the weakly emitting extended regions, which we name coronal voids. In particular, we aim to understand whether these voids result from a reduced heat input into the corona or if they are associated with mainly unipolar and possibly open magnetic fields, similar to coronal holes. Methods. We defined the coronal voids via an intensity threshold of 75% of the mean quiet-Sun (QS) EUV intensity observed by the high-resolution EUV channel (HRIEUV) of the Extreme Ultraviolet Imager on Solar Orbiter. The line-of-sight magnetograms of the same solar region recorded by the High Resolution Telescope of the Polarimetric and Helioseismic Imager allowed us to compare the photospheric magnetic field beneath the coronal voids with that in other parts of the QS. Results. The coronal voids studied here range in size from a few granules to a few supergranules and on average exhibit a reduced intensity of 67% of the mean value of the entire field of view. The magnetic flux density in the photosphere below the voids is 76% (or more) lower than in the surrounding QS. Specifically, the coronal voids show much weaker or no network structures. The detected flux imbalances fall in the range of imbalances found in QS areas of the same size. Conclusions. We conclude that coronal voids form because of locally reduced heating of the corona due to reduced magnetic flux density in the photosphere. This makes them a distinct class of (dark) structure, different from coronal holes.
dc.language.iso eng
dc.relation.ispartof Astronomy and Astrophysics, 2023, vol. 678, num. A196, p. 1-10
dc.source Nölke, J.D. et al. (2023). Coronal voids and their magnetic nature. Astronomy and Astrophysics, 678, A196. https://doi.org/10.1051/0004-6361/202346040
dc.subject astronomia
dc.subject astrofísica
dc.subject física
dc.subject electrònica
dc.subject photosphere
dc.subject magnetic fields
dc.subject atmosphere
dc.title Coronal voids and their magnetic nature
dc.type journal article
dc.date.updated 2023-11-27T11:13:01Z
dc.identifier.doi 10.1051/0004-6361/202346040
dc.identifier.idgrec 162134
dc.rights.accessRights open access

Visualització       (16.33Mb)

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Cerca a RODERIC

Cerca avançada

Visualitza

Estadístiques