NAGIOS: RODERIC FUNCIONANDO

Size-intensive decomposition of orbital energy denominators

Repositori DSpace/Manakin

IMPORTANT: Aquest repositori està en una versió antiga des del 3/12/2023. La nova instal.lació está en https://roderic.uv.es/

Size-intensive decomposition of orbital energy denominators

Mostra el registre complet de l'element

Visualització       (63.26Kb)

   
    
Koch, Henrik; Sánchez de Merás, Alfredo
Aquest document és un/a article, creat/da en: 2000

Este documento está disponible también en : http://scitation.aip.org/getpdf/servlet/GetPDFServlet?filetype=pdf&id=JCPSA6000113000002000508000001&idtype=cvips&prog=normal&doi=10.1063/1.481910

We introduce an alternative to Almlöf and Häser’s Laplace transform decomposition of orbital energy denominators used in obtaining reduced scaling algorithms in perturbation theory based methods. The new decomposition is based on the Cholesky decomposition of positive semidefinite matrices. We show that orbital denominators have a particular short and size-intensive Cholesky decomposition. The main advantage in using the Cholesky decomposition, besides the shorter expansion, is the systematic improvement of the results without the penalties encountered in the Laplace transform decomposition when changing the number of integration points in order to control the convergence. Applications will focus on the coupled-cluster singles and doubles model including connected triples corrections [CCSD(T)], and several numerical examples are discussed.
Veure al catàleg Trobes

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre complet de l'element

Cerca a RODERIC

Cerca avançada

Visualitza

Estadístiques