NAGIOS: RODERIC FUNCIONANDO

Size-intensive decomposition of orbital energy denominators

Repositori DSpace/Manakin

IMPORTANT: Aquest repositori està en una versió antiga des del 3/12/2023. La nova instal.lació está en https://roderic.uv.es/

Size-intensive decomposition of orbital energy denominators

Mostra el registre parcial de l'element

dc.contributor.author Koch, Henrik
dc.contributor.author Sánchez de Merás, Alfredo
dc.date.accessioned 2010-06-14T09:26:06Z
dc.date.available 2010-06-14T09:26:06Z
dc.date.issued 2000
dc.identifier.citation KOCH, Henrik ; SANCHEZ DE MERÁS, Alfredo. Size-intensive decomposition of orbital energy denominators. En: Journal of Chemical Physics, 2000, vol. 113, no. 2 en
dc.identifier.uri http://hdl.handle.net/10550/12958
dc.description.abstract We introduce an alternative to Almlöf and Häser’s Laplace transform decomposition of orbital energy denominators used in obtaining reduced scaling algorithms in perturbation theory based methods. The new decomposition is based on the Cholesky decomposition of positive semidefinite matrices. We show that orbital denominators have a particular short and size-intensive Cholesky decomposition. The main advantage in using the Cholesky decomposition, besides the shorter expansion, is the systematic improvement of the results without the penalties encountered in the Laplace transform decomposition when changing the number of integration points in order to control the convergence. Applications will focus on the coupled-cluster singles and doubles model including connected triples corrections [CCSD(T)], and several numerical examples are discussed. en_US
dc.language.iso en en
dc.subject Orbital calculations ; Perturbation theory ; Convergence of numerical methods ; Integration ; Coupled cluster calculations en
dc.title Size-intensive decomposition of orbital energy denominators en
dc.type journal article es_ES
dc.subject.unesco UNESCO::FÍSICA::Química física en
dc.identifier.doi 10.1063/1.481910 en
dc.type.hasVersion VoR es_ES
dc.identifier.url http://scitation.aip.org/getpdf/servlet/GetPDFServlet?filetype=pdf&id=JCPSA6000113000002000508000001&idtype=cvips&prog=normal&doi=10.1063/1.481910 en

Visualització       (63.26Kb)

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Cerca a RODERIC

Cerca avançada

Visualitza

Estadístiques