|
Incompatible coefficient of thermal expansion (CTE) is supposed to be a reason for chipping of ceramic veneered zirconia. This study evaluates the effect of veneering ceramic at varied CTE on bond strength to zirconia. Zirconia disks (Z, Ø 10 mm, 1.0 mm thickness) were prepared from Y-TZP (Cercon®) and sintered at 1350°C for 6 hours. All zirconia disks were veneered with ceramics ((Ø 7.0 mm, 1.5 mm thickness) with varied CTE including VITADur® alpha (VD?), VITAVM®7 (VM7), VITAVM®9 (VM9), Cercon® ceramkiss (CCK), IPSe.max® ceram (IeC), and IPS dSIGN® (IdS) (n=15). The specimens were thermo-cycled (5-55 °C, 500 cycles) prior to determine the shear bond strength on a universal testing machine. The veneering ceramic and zirconia rods (Ø 4 mm, 30 mm length) were prepared for CTE evaluation. ANOVA and Tukey?s multiple comparisons were used to determine the statistically significant difference (?=0.05). Weibull analysis was applied for survival probability, Weibull modulus (m), and characteristics strength (?o) of the shear bond. The interfaces were microscopically examined. The phase transformation of zirconia was determined using X ray diffraction. The mean±sd (MPa), m, and ?o of bond strength were 20.45±2.32, 9.25, and 21.53 for Z-VD?, 19.47±4.53, 4.66, and 20.31 for Z-VM7, 21.05±3.96, 5.61, and 21.88 for Z-IeC, 25.85±2.74, 9.93, and 27.15 for Z-VM9, 25.82±4.39, 6.27, and 27.06 for Z-CCK, and 2.96±0.73, 4.11, and 3.28 for Z-IdS. The CTE (×10-6/°C) were 10.80, 7.83, 7.87, 9.86, 9.93, 10.03, and 12.95 for Z, VD?, VM7, IeC, VM9, CCK, and IdS. The bond strength was significantly affected by the CTE difference (p<0.05). The t?m phase transformation related with the CTE difference. The CTE?s differences induced stress that affected the bond strength. CTE?s compatibility of veneering ceramic to zirconia is crucial for enhancing the bond strength. The CTE difference approximately 0.77-0.87×10-6/°C was recommended.
|