Charge injection and trapping at perovskite interfaces with organic hole transporting materials of different ionization energies
Mostra el registre complet de l'element
Visualització
(1.253Mb)
|
|
|
|
|
|
Droseros, Nikolaos; Dänekamp, Benedikt; Tsokkou, Demetra; Boix, Pablo P.; Banerji, Natalie
|
|
Aquest document és un/a article, creat/da en: 2019
|
|
|
|
The extraction of photogenerated holes from CH3NH3PbI3 is crucial in perovskite solar cells. Understanding the main parameters that influence this process is essential to design materials and devices with improved efficiency. A series of vacuum deposited hole transporting materials (HTMs) of different ionization energies, used in efficient photovoltaic devices, are studied here by means of femtosecond transient absorption spectroscopy. We find that ultrafast charge injection from the perovskite into the different HTMs (<100 fs) competes with carrier thermalization and occurs independently of their ionization energy. Our results prove that injection takes place from hot states in the valence band making this efficient even for HTMs with higher ionization energy than that of the perovskite. Moreover, a new trapping mechanism is observed after the addition of HTMs, which is attributed to interfacial electron traps formed between the CH3NH3PbI3 and the HTMs, in addition to traps in the neat perovskite. Interfacial electron trapping is slower compared to the ultrafast hole injection, which contributes to the high efficiency obtained when these HTMs are employed in solar cells.
|
|
Veure al catàleg Trobes
|
|
|
Aquest element apareix en la col·lecció o col·leccions següent(s)
Mostra el registre complet de l'element