|
The spread of viruses among cells and hosts often involves multi-virion structures. For instance, virions can form aggregates that allow for the co-delivery of multiple genome copies to the same cell from a single infectious unit. Previously, we showed that vesicular stomatitis virus (VSV), an enveloped, negative-strand RNA virus, undergoes strong aggregation in the presence of saliva from certain individuals. However, the molecular components responsible for such aggregation remain unknown. Here we show that saliva-driven aggregation is protein dependent, and we use comparative proteomics to analyze the protein content of strongly versus poorly aggregating saliva. Quantitative analysis of over 300 proteins led to the identification of 18 upregulated proteins in strongly aggregating saliva. One of these proteins, the fibrinogen gamma chain, was verified experimentally as a factor promoting VSV aggregation in a dose-dependent manner. This study hence identifies a protein responsible for saliva-driven VSV aggregation. Yet, the possible involvement of additional proteins or factors cannot be discarded.
|