NAGIOS: RODERIC FUNCIONANDO

Gap Filling of Biophysical Parameter Time Series with Multi-Output Gaussian Processes

Repositori DSpace/Manakin

IMPORTANT: Aquest repositori està en una versió antiga des del 3/12/2023. La nova instal.lació está en https://roderic.uv.es/

Gap Filling of Biophysical Parameter Time Series with Multi-Output Gaussian Processes

Mostra el registre complet de l'element

Visualització       (258.6Kb)

   
    
Mateo-Sanchis, Anna; Muñoz Marí, Jordi; Campos Taberner, Manuel; García Haro, Francisco Javier; Camps-Valls, Gustau
Aquest document és un/a conferència, creat/da en: 2018
In this work we evaluate multi-output (MO) Gaussian Process (GP) models based on the linear model of coregionalization (LMC) for estimation of biophysical parameter variables under a gap filling setup. In particular, we focus on LAI and fAPAR over rice areas. We show how this problem cannot be solved with standard single-output (SO) GP models, and how the proposed MO-GP models are able to successfully predict these variables even in high missing data regimes, by implicitly performing an across-domain information transfer.In this work we evaluate multi-output (MO) Gaussian Process (GP) models based on the linear model of coregionalization (LMC) for estimation of biophysical parameter variables under a gap filling setup. In particular, we focus on LAI and fAPAR over rice areas. We show how this problem cannot be solved with standard single-output (SO) GP models, and how the proposed MO-GP models are able to successfully predict these variables even in high missing data regimes, by implicitly performing an across-domain information transfer.
Veure al catàleg Trobes

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre complet de l'element

Cerca a RODERIC

Cerca avançada

Visualitza

Estadístiques