Mostra el registre parcial de l'element
dc.contributor.author | Mateo-Sanchis, Anna | |
dc.contributor.author | Muñoz Marí, Jordi | |
dc.contributor.author | Campos Taberner, Manuel | |
dc.contributor.author | García Haro, Francisco Javier | |
dc.contributor.author | Camps-Valls, Gustau | |
dc.date.accessioned | 2020-12-12T10:48:19Z | |
dc.date.available | 2020-12-13T05:45:07Z | |
dc.date.issued | 2018 | es_ES |
dc.identifier.citation | A. Mateo-Sanchis, J. Muñoz-Marí, M. Campos-Taberner, J. García-Haro and G. Camps-Valls, "Gap Filling of Biophysical Parameter Time Series with Multi-Output Gaussian Processes," IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, 2018, pp. 4039-4042, doi: 10.1109/IGARSS.2018.8519254. | es_ES |
dc.identifier.uri | https://hdl.handle.net/10550/76651 | |
dc.description.abstract | In this work we evaluate multi-output (MO) Gaussian Process (GP) models based on the linear model of coregionalization (LMC) for estimation of biophysical parameter variables under a gap filling setup. In particular, we focus on LAI and fAPAR over rice areas. We show how this problem cannot be solved with standard single-output (SO) GP models, and how the proposed MO-GP models are able to successfully predict these variables even in high missing data regimes, by implicitly performing an across-domain information transfer. | es_ES |
dc.description.abstract | In this work we evaluate multi-output (MO) Gaussian Process (GP) models based on the linear model of coregionalization (LMC) for estimation of biophysical parameter variables under a gap filling setup. In particular, we focus on LAI and fAPAR over rice areas. We show how this problem cannot be solved with standard single-output (SO) GP models, and how the proposed MO-GP models are able to successfully predict these variables even in high missing data regimes, by implicitly performing an across-domain information transfer. | en_US |
dc.language.iso | en | es_ES |
dc.relation.ispartofseries | 2018 IEEE International Geoscience and Remote Sensing Symposium; | |
dc.subject | Time series | es_ES |
dc.subject | remote sensing | es_ES |
dc.subject | machine learning | es_ES |
dc.subject | gaussian processes | es_ES |
dc.title | Gap Filling of Biophysical Parameter Time Series with Multi-Output Gaussian Processes | es_ES |
dc.type | lecture | es_ES |
dc.subject.unesco | UNESCO::CIENCIAS DE LA TIERRA Y DEL ESPACIO | es_ES |
dc.identifier.doi | 10.1109/IGARSS.2018.8519254 | es_ES |
dc.accrualmethod | - | es_ES |
dc.embargo.terms | 0 days | es_ES |
dc.relation.projectID | CICYT TIN2015-64210-R | es_ES |