NAGIOS: RODERIC FUNCIONANDO

In Silico Molecular Engineering of Dysprosocenium-Based Complexes to Decouple Spin Energy Levels from Molecular Vibrations

Repositori DSpace/Manakin

IMPORTANT: Aquest repositori està en una versió antiga des del 3/12/2023. La nova instal.lació está en https://roderic.uv.es/

In Silico Molecular Engineering of Dysprosocenium-Based Complexes to Decouple Spin Energy Levels from Molecular Vibrations

Mostra el registre parcial de l'element

dc.contributor.author Ullah, Aman
dc.contributor.author Cerdá, Jesús
dc.contributor.author Baldoví, José J.
dc.contributor.author Varganov, Sergey A.
dc.contributor.author Aragó, Juan
dc.contributor.author Gaita Ariño, Alejandro
dc.date.accessioned 2021-05-07T06:42:54Z
dc.date.available 2021-05-08T04:45:05Z
dc.date.issued 2019 es_ES
dc.identifier.citation Aman Ullah, Jesús Cerdá, José J. Baldoví, Sergey A. Varganov, Juan Aragó, and Alejandro Gaita-Ariño, J. Phys. Chem. Lett. 2019, 10, 24, 7678–7683 es_ES
dc.identifier.uri https://hdl.handle.net/10550/79230
dc.description.abstract Molecular nanomagnets hold great promise for spintronics and quantum technologies, provided that their spin memory can be preserved above liquid-nitrogen temperatures. In the past few years, the magnetic hysteresis records observed for two related dysprosocenium-type complexes have highlighted the potential of molecular engineering to decouple vibrational excitations from spin states and thereby enhance magnetic memory. Herein, we study the spin-vibrational coupling in [(CpiPr5)Dy(Cp*)]+ (CpiPr5 = pentaisopropylcyclopentadienyl, Cp* = pentamethylcyclopentadienyl), which currently holds the hysteresis record (80 K), by means of a computationally affordable methodology that combines first-principles electronic structure calculations with a phenomenological ligand field model. Our analysis is in good agreement with the previously reported state-of-the-art ab initio calculations, with the advantage of drastically reducing the computation time. We then apply the proposed methodology to three alternative dysprosocenium-type complexes, extracting physical insights that demonstrate the usefulness of this strategy to efficiently engineer and screen magnetic molecules with the potential of retaining spin information at higher temperatures. es_ES
dc.description.abstract Molecular nanomagnets hold great promise for spintronics and quantum technologies, provided that their spin memory can be preserved above liquid-nitrogen temperatures. In the past few years, the magnetic hysteresis records observed for two related dysprosocenium-type complexes have highlighted the potential of molecular engineering to decouple vibrational excitations from spin states and thereby enhance magnetic memory. Herein, we study the spin-vibrational coupling in [(CpiPr5)Dy(Cp*)]+ (CpiPr5 = pentaisopropylcyclopentadienyl, Cp* = pentamethylcyclopentadienyl), which currently holds the hysteresis record (80 K), by means of a computationally affordable methodology that combines first-principles electronic structure calculations with a phenomenological ligand field model. Our analysis is in good agreement with the previously reported state-of-the-art ab initio calculations, with the advantage of drastically reducing the computation time. We then apply the proposed methodology to three alternative dysprosocenium-type complexes, extracting physical insights that demonstrate the usefulness of this strategy to efficiently engineer and screen magnetic molecules with the potential of retaining spin information at higher temperatures. en_US
dc.description.sponsorship European Research Council es_ES
dc.description.sponsorship European Cooperation in Science & Tecnology es_ES
dc.description.sponsorship Generalitat Valenciana (Prometeo) es_ES
dc.language.iso en_US es_ES
dc.title In Silico Molecular Engineering of Dysprosocenium-Based Complexes to Decouple Spin Energy Levels from Molecular Vibrations es_ES
dc.type journal article es_ES
dc.subject.unesco UNESCO::QUÍMICA es_ES
dc.identifier.doi 10.1021/acs.jpclett.9b02982 es_ES
dc.identifier.idgrec 137683 es_ES
dc.accrualmethod - es_ES
dc.embargo.terms 0 days es_ES
dc.relation.projectID GVA/PROMETEO/2019/066
dc.relation.projectID ERC-CoG-647301 DECRESIM
dc.relation.projectID COST 15128 Molecular Spintronics Project en
dc.relation.projectID PGC2018-099568-B-I00
dc.relation.projectID MAT2017-89993-R
dc.relation.projectID CTQ2017-89528-P
dc.relation.projectID MDM-2015-0538

Visualització       (1.007Mb)

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Cerca a RODERIC

Cerca avançada

Visualitza

Estadístiques